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Controlling Effects



Examples of effects

printf ("Hello World!");

I/O effect

char c = getchar ();

I/O effect

  int *p; 

  ︙ 
  *p = *p + 2;

write effect

read effect



  class MyException  
  extends Exception {} 

  ︙ 
  throw new MyException();

exception effect 
(non-local control flow)

  pthread_t mythread; 

  pthread_create (&mythread, NULL, thread_function,  
                  NULL);

thread-creation effect



Internal versus external effects

• External effects can be observed outside of the function where they occur


‣ I/O is an external effect


‣ Accessing a global variable may be an external effect


• Internal effects cannot be observed on the outside


‣ Allocating, using, and deallocating memory


• We can often treat a function with only internal effects as a pure function


‣ Purity is about what is observable!



A definition of pure functions

• A pure function is fully specified by a mapping of argument to result values


• Consequences include the following:


‣ Two invocations with the same arguments result in the same result


‣ A pure function leaves no observable trace beyond its result


• Caveat:


‣ Purity pertains to a particular level of abstraction


‣ After all, the assembly instructions of a pure Haskell function are not pure



A definition of impure or effectful functions

• An impure or effectful function is one that is not pure:


‣ it makes use of information beyond its arguments or


‣ produces an observable effect beyond its result (or both)


• They are not functions in the mathematical sense; they are sometimes called 
procedures



Why are effects harmful?

• They introduce (often subtle) requirements on the execution order


• They are not readily apparent from a function prototype or signature


• They introduce non-local dependencies


• They interfere badly with strong typing; for example:


‣ Subtyping and mutable arrays in Java (even worse with generics)


‣ Polymorphism and mutable references in ML



Effects and execution order

• Execution order can be surprising


• Execution order can be 
indeterminate:


‣ Global object initialisation


‣ Concurrency

getchar() example 



Avoiding effects

• Without effects, all functions are pure


‣ Can you program like that?


‣ Experience suggest, yes — actually, very well!


‣ Need to get used to the programming style, though


• It impacts the program structure (often positively)


• It may require the use of different algorithms


• Leads to purely functional programming



Sometimes we need effects

• Most notably: I/O is usually effectful


• Interoperating with impure languages requires effects


• Sometimes effectful algorithms are more efficient


‣ Internal effects are usually sufficient

Haskell's approach:

Pure by default, effectful 

when necessary! 



Haskell functions are pure by default

• Maps a value of type a to a value of type b without any effects


• Effectful functions require specialised types

f :: a -> b



Haskell functions are pure by default

• Maps a value of type a to a value of type b without any effects


• Effectful functions require specialised types

f :: a -> b

g :: a -> IO b

perform external effects and 
then return a value of type b



Effects need to be carefully contained

• Effects have to be reflected in the type:

g :: a -> World —> (b, World)

printStr ::  String -> World —> ((), World)

getChar ::  World —> (Char, World)

• Why is this problematic?



Effects need to be carefully contained

• Effects have to be reflected in the type:

g :: a -> World —> (b, World)

g :: a -> IO b

newtype IO b = IO (World -> (b, World)) 
conceptually, the World is 
hidden inside the abstract 

data type IO

main     :: IO ()

getChar  :: IO Char

putStrLn :: String -> IO ()



What can we do with IO operations?

• Combine them to form more complex IO-operations using the do notation:

  do { 
    putStrLn “Hi, ”; 
    putStrLn “how are you?”; 
  }

Braces and 
semicolon  
optional

• This is a kind a function composition, as the world is passed from the first 
to the second operation, and so on


• All operations in the do have to be of type IO

:: IO()
:: IO()



The do notation and types

  getChar :: IO Char 
  putChar :: Char -> IO ()

putChar getChar

Type error!


Type mismatch:  
IO Char != Char

  do { 
    c <- getChar; 
    putChar c; 
  }

IO Char

Char

Strips the IO



What can we do with IO operations?

  do { 
    ch1 <- getChar; 
    ch2 <- getChar; 
    if (ord ch1 < ord ch2) 
      then putStrLn “yes” 
      else putStrLn “no” 

 }

:: IO Char
:: IO Char

:: IO ()
:: IO ()



What can we do with IO operations?

• Call pure functions and bind their return value to a variable:

  do { 
    ch <- getChar; 
    let chUp = toUpper ch 
    return (ord chUp) 

 }

return :: a -> IO a 

:: IO Int
:: IO Char
:: IO Char



What can’t we do with IO operations?

• We cannot write a function of type:

IO a -> a 



Effects need to be carefully contained

• If a pure function f calls an impure function g, f becomes impure


• We have the following rule:


‣ Only impure functions can call impure functions


‣ Unless the inner function contains only internal effects that we 
encapsulate

  f x = ...g... 

  g :: a -> IO b 
  g y = ...

contaminated by 
effects

Haskell uses the 
type system, to 
enforce this rule 



Local state

• Sometimes, local state is sufficient

g :: a -> s —> (b, s)

State s b

• Let’s say we want a global counter:

type Counter = State Int 

getCnt :: Counter Int 
incCnt :: Counter () 
setCnt :: Int -> Counter ()

incCounterMax :: Int -> Counter Bool 
incCounterMax max = do 
  curr <- getCnt 
  if curr < max  
    then do {incCnt; return False} 
    else do {setCnt 0; return True}

state can be 
different things

runState :: State s a -> s -> (a, s)



Which on type constructors can we use the ‘do’ notation?

• The type constructor m has to be a monad

 return :: a -> m a                

 (>>=) :: m a -> (a -> m b) -> m b 

• return a >>= k            =    k a             
• ma >>= return             =    ma              
• ma >>= (\x -> k x >>= h)  =   (ma >>= k) >>= h 

• The do-notation is just syntactic sugar to make using bind more convenient

called “bind”

• Following properties have to be met:

https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-


Monads don’t necessarily encapsulate state

• Maybe type constructor is another example of a monad

data Maybe a 
  = Nothing 
  | Just a

return :: a -> Maybe a 
return x = Just x 

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b 
(>>=) Nothing _  = Nothing 
(>>=) (Just x) f = f x 



Monads don’t necessarily encapsulate state

• [] type constructor is another example of a monad

return :: a -> [a] 
return x = [x] 

(>>=) :: [a] -> (a -> [b]) -> [b] 
(>>=) as f  = concat (map f as) 



Generators in QuickCheck are monads

searchTrees :: Gen BinaryIntTree 
searchTrees = sized searchTrees' 
  where  
   searchTrees' 0 = return Leaf 
   searchTrees' n = do  
      v <- (arbitrary :: Gen Int) 
      fmap (insert v) (searchTrees' $ n - 1) 

fmap :: (a -> b) -> Gen a -> Gen b



The benefits of controlling effects

• Absence of effects makes strong typing in pure functions more powerful


‣ A type signature captures the entire interface of a function


‣ All dependencies are explicit in the form of data dependencies


‣ All dependencies are typed


• It is easier to reason about pure code & and it is easier to test pure code


‣ Testing and reasoning (formal & informal) is local, independent of context


‣ Type checking leads to stronger guarantees



The pure-by-default architecture

Pure 
application 

core

Impure 
shell

I/O

Encapsulated 
internal state



Mutable variables in Haskell



Mutable variables in IO computations

  data IORef a 
  newIORef   :: a            -> IO (IORef a) 
  readIORef  :: IORef a      -> IO a 
  writeIORef :: IORef a -> a -> IO ()

Let's look at an example

http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29


Two flavours of mutable variables

  data IORef a 
  newIORef   :: a            -> IO (IORef a) 
  readIORef  :: IORef a      -> IO a 
  writeIORef :: IORef a -> a -> IO ()

  data STRef s a 
  newSTRef   :: a              -> ST s (STRef s a) 
  readSTRef  :: STRef s a      -> ST s a 
  writeSTRef :: STRef s a -> a -> ST s ()

can only be run from main


run with runST :: (forall s. ST s a) -> a


Let's look at an example

http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29


Encapsulated state

• Some algorithms suggest stateful code


‣ For example, a graph traversal marking visited nodes to spot cycles

runST statefulGraphTraversal

pure from the outside

stateful inside

• The type variable s in STRef s a represents a state thread


• It ensures that state from one runST invocation cannot leak into another



IO versus ST

  data IORef a 
  newIORef   :: a            -> IO (IORef a) 
  readIORef  :: IORef a      -> IO a 
  writeIORef :: IORef a -> a -> IO ()

  data STRef s a 
  newSTRef   :: a              -> ST s (STRef s a) 
  readSTRef  :: STRef s a      -> ST s a 
  writeSTRef :: STRef s a -> a -> ST s ()

• Both IO and ST s mark the use of state


• Both can be used with the do notation

http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29

