
Software System Design and Implementation

The University of New South Wales

School of Computer Science and Engineering

Sydney, Australia

Gabriele Keller

COMP3141 18s1

Controlling Effects

Examples of effects

printf ("Hello World!");

I/O effect

char c = getchar ();

I/O effect

 int *p;

 ︙
 *p = *p + 2;

write effect

read effect

 class MyException
 extends Exception {}

 ︙
 throw new MyException();

exception effect
(non-local control flow)

 pthread_t mythread;

 pthread_create (&mythread, NULL, thread_function,
 NULL);

thread-creation effect

Internal versus external effects

• External effects can be observed outside of the function where they occur

‣ I/O is an external effect

‣ Accessing a global variable may be an external effect

• Internal effects cannot be observed on the outside

‣ Allocating, using, and deallocating memory

• We can often treat a function with only internal effects as a pure function

‣ Purity is about what is observable!

A definition of pure functions

• A pure function is fully specified by a mapping of argument to result values

• Consequences include the following:

‣ Two invocations with the same arguments result in the same result

‣ A pure function leaves no observable trace beyond its result

• Caveat:

‣ Purity pertains to a particular level of abstraction

‣ After all, the assembly instructions of a pure Haskell function are not pure

A definition of impure or effectful functions

• An impure or effectful function is one that is not pure:

‣ it makes use of information beyond its arguments or

‣ produces an observable effect beyond its result (or both)

• They are not functions in the mathematical sense; they are sometimes called
procedures

Why are effects harmful?

• They introduce (often subtle) requirements on the execution order

• They are not readily apparent from a function prototype or signature

• They introduce non-local dependencies

• They interfere badly with strong typing; for example:

‣ Subtyping and mutable arrays in Java (even worse with generics)

‣ Polymorphism and mutable references in ML

Effects and execution order

• Execution order can be surprising

• Execution order can be
indeterminate:

‣ Global object initialisation

‣ Concurrency

getchar() example

Avoiding effects

• Without effects, all functions are pure

‣ Can you program like that?

‣ Experience suggest, yes — actually, very well!

‣ Need to get used to the programming style, though

• It impacts the program structure (often positively)

• It may require the use of different algorithms

• Leads to purely functional programming

Sometimes we need effects

• Most notably: I/O is usually effectful

• Interoperating with impure languages requires effects

• Sometimes effectful algorithms are more efficient

‣ Internal effects are usually sufficient

Haskell's approach:

Pure by default, effectful

when necessary!

Haskell functions are pure by default

• Maps a value of type a to a value of type b without any effects

• Effectful functions require specialised types

f :: a -> b

Haskell functions are pure by default

• Maps a value of type a to a value of type b without any effects

• Effectful functions require specialised types

f :: a -> b

g :: a -> IO b

perform external effects and
then return a value of type b

Effects need to be carefully contained

• Effects have to be reflected in the type:

g :: a -> World —> (b, World)

printStr :: String -> World —> ((), World)

getChar :: World —> (Char, World)

• Why is this problematic?

Effects need to be carefully contained

• Effects have to be reflected in the type:

g :: a -> World —> (b, World)

g :: a -> IO b

newtype IO b = IO (World -> (b, World))
conceptually, the World is
hidden inside the abstract

data type IO

main :: IO ()

getChar :: IO Char

putStrLn :: String -> IO ()

What can we do with IO operations?

• Combine them to form more complex IO-operations using the do notation:

 do {
 putStrLn “Hi, ”;
 putStrLn “how are you?”;
 }

Braces and
semicolon
optional

• This is a kind a function composition, as the world is passed from the first
to the second operation, and so on

• All operations in the do have to be of type IO

:: IO()
:: IO()

The do notation and types

 getChar :: IO Char
 putChar :: Char -> IO ()

putChar getChar

Type error!

Type mismatch:
IO Char != Char

 do {
 c <- getChar;
 putChar c;
 }

IO Char

Char

Strips the IO

What can we do with IO operations?

 do {
 ch1 <- getChar;
 ch2 <- getChar;
 if (ord ch1 < ord ch2)
 then putStrLn “yes”
 else putStrLn “no”

 }

:: IO Char
:: IO Char

:: IO ()
:: IO ()

What can we do with IO operations?

• Call pure functions and bind their return value to a variable:

 do {
 ch <- getChar;
 let chUp = toUpper ch
 return (ord chUp)

 }

return :: a -> IO a

:: IO Int
:: IO Char
:: IO Char

What can’t we do with IO operations?

• We cannot write a function of type:

IO a -> a

Effects need to be carefully contained

• If a pure function f calls an impure function g, f becomes impure

• We have the following rule:

‣ Only impure functions can call impure functions

‣ Unless the inner function contains only internal effects that we
encapsulate

 f x = ...g...

 g :: a -> IO b
 g y = ...

contaminated by
effects

Haskell uses the
type system, to
enforce this rule

Local state

• Sometimes, local state is sufficient

g :: a -> s —> (b, s)

State s b

• Let’s say we want a global counter:

type Counter = State Int

getCnt :: Counter Int
incCnt :: Counter ()
setCnt :: Int -> Counter ()

incCounterMax :: Int -> Counter Bool
incCounterMax max = do
 curr <- getCnt
 if curr < max
 then do {incCnt; return False}
 else do {setCnt 0; return True}

state can be
different things

runState :: State s a -> s -> (a, s)

Which on type constructors can we use the ‘do’ notation?

• The type constructor m has to be a monad

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

• return a >>= k = k a
• ma >>= return = ma
• ma >>= (\x -> k x >>= h) = (ma >>= k) >>= h

• The do-notation is just syntactic sugar to make using bind more convenient

called “bind”

• Following properties have to be met:

https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:return
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-
https://hackage.haskell.org/package/base-4.9.1.0/docs/Control-Monad.html#v:-62--62--61-

Monads don’t necessarily encapsulate state

• Maybe type constructor is another example of a monad

data Maybe a
 = Nothing
 | Just a

return :: a -> Maybe a
return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
(>>=) Nothing _ = Nothing
(>>=) (Just x) f = f x

Monads don’t necessarily encapsulate state

• [] type constructor is another example of a monad

return :: a -> [a]
return x = [x]

(>>=) :: [a] -> (a -> [b]) -> [b]
(>>=) as f = concat (map f as)

Generators in QuickCheck are monads

searchTrees :: Gen BinaryIntTree
searchTrees = sized searchTrees'
 where
 searchTrees' 0 = return Leaf
 searchTrees' n = do
 v <- (arbitrary :: Gen Int)
 fmap (insert v) (searchTrees' $ n - 1)

fmap :: (a -> b) -> Gen a -> Gen b

The benefits of controlling effects

• Absence of effects makes strong typing in pure functions more powerful

‣ A type signature captures the entire interface of a function

‣ All dependencies are explicit in the form of data dependencies

‣ All dependencies are typed

• It is easier to reason about pure code & and it is easier to test pure code

‣ Testing and reasoning (formal & informal) is local, independent of context

‣ Type checking leads to stronger guarantees

The pure-by-default architecture

Pure
application

core

Impure
shell

I/O

Encapsulated
internal state

Mutable variables in Haskell

Mutable variables in IO computations

 data IORef a
 newIORef :: a -> IO (IORef a)
 readIORef :: IORef a -> IO a
 writeIORef :: IORef a -> a -> IO ()

Let's look at an example

http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29

Two flavours of mutable variables

 data IORef a
 newIORef :: a -> IO (IORef a)
 readIORef :: IORef a -> IO a
 writeIORef :: IORef a -> a -> IO ()

 data STRef s a
 newSTRef :: a -> ST s (STRef s a)
 readSTRef :: STRef s a -> ST s a
 writeSTRef :: STRef s a -> a -> ST s ()

can only be run from main

run with runST :: (forall s. ST s a) -> a

Let's look at an example

http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29

Encapsulated state

• Some algorithms suggest stateful code

‣ For example, a graph traversal marking visited nodes to spot cycles

runST statefulGraphTraversal

pure from the outside

stateful inside

• The type variable s in STRef s a represents a state thread

• It ensures that state from one runST invocation cannot leak into another

IO versus ST

 data IORef a
 newIORef :: a -> IO (IORef a)
 readIORef :: IORef a -> IO a
 writeIORef :: IORef a -> a -> IO ()

 data STRef s a
 newSTRef :: a -> ST s (STRef s a)
 readSTRef :: STRef s a -> ST s a
 writeSTRef :: STRef s a -> a -> ST s ()

• Both IO and ST s mark the use of state

• Both can be used with the do notation

http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/System-IO.html#t%3AIO
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/base-4.2.0.1/Data-IORef.html#t%3AIORef
http://www.haskell.org/ghc/docs/6.12.2/html/libraries/ghc-prim-0.2.0.0/GHC-Unit.html#t%3A%28%29

